A curve has the equation y = 4x^2 + 5x + 3 and a line has the equation y = x + 2. Show that the line and the curve have one point of intersection.

Set the equations equal to each other: 4x^2 + 5x + 3 = x + 2Collect terms and set equal to 0: 4x^2 + 4x + 1 = 0Factorise the equation: (2x + 1)(2x + 1) = 0Can now find the value of x: 2x + 1 = 0, therefore 2x = -1, therefore x = -1/2As only one root is found, there must only be one point of intersection between the curve and the line. They intersect at the point x = -1/2
Alternatively, x = y - 2 can be substituted in. This will find the singular y coordinate of y = 3/2

FG
Answered by Francesca G. Maths tutor

6832 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

2x + 7y = 14 and x + y = 2. Find the value of x and y which satisfy both equations.


Solve the inequality 6y + 5 > 8


solve the simultaneous equation: 5x+y =21 and x-3y=9


The perimeter of a right-angled triangle is 72 cm. The lengths of its sides are in the ratio 3 : 4 : 5 Work out the area of the triangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning