A curve has the equation y = 4x^2 + 5x + 3 and a line has the equation y = x + 2. Show that the line and the curve have one point of intersection.

Set the equations equal to each other: 4x^2 + 5x + 3 = x + 2Collect terms and set equal to 0: 4x^2 + 4x + 1 = 0Factorise the equation: (2x + 1)(2x + 1) = 0Can now find the value of x: 2x + 1 = 0, therefore 2x = -1, therefore x = -1/2As only one root is found, there must only be one point of intersection between the curve and the line. They intersect at the point x = -1/2
Alternatively, x = y - 2 can be substituted in. This will find the singular y coordinate of y = 3/2

Answered by Francesca G. Maths tutor

5973 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify. (x(^2)+4x)/(x(^2)+3x-4)


A circle with centre C has equation x^2 + y^2 + 2x - 6y - 40 = 0. Express as (x - a)^2 + (y - b)^2 = d.


Draw the graph of, y = x^2 – 2x – 4


For the equation y=2x+7, what is the gradient and the y intercept?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences