A curve has the equation y = 4x^2 + 5x + 3 and a line has the equation y = x + 2. Show that the line and the curve have one point of intersection.

Set the equations equal to each other: 4x^2 + 5x + 3 = x + 2Collect terms and set equal to 0: 4x^2 + 4x + 1 = 0Factorise the equation: (2x + 1)(2x + 1) = 0Can now find the value of x: 2x + 1 = 0, therefore 2x = -1, therefore x = -1/2As only one root is found, there must only be one point of intersection between the curve and the line. They intersect at the point x = -1/2
Alternatively, x = y - 2 can be substituted in. This will find the singular y coordinate of y = 3/2

Answered by Francesca G. Maths tutor

5450 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 8x + 2y =46, and 7x + 3y = 47


How do you expand out and simply brackets, like the following: (x-3)(x+4)?


Solve the following pair of simultaneous equations: 5x+2y=8 and 2x+y=7


The equation of the line L1 is y = 3x – 2 . The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences