Simplify the following algebraic fraction; (3x^2 - x - 2) / ((1/2)x + (1/3)).

First we need to factorise the numerator into two expressions. We can see one expression must start (3x + ?) and the other therefore must hold (x + ?), we know this because the two brackets must multiply together to generate 3x2. Now we need to consider two numbers that will multiply together to give -2, this can be either +1 and -2 or -1 and +2. To gain the required -x in the original expression we see our factorisation must read: (3x +2)(x-1).Now we want to remove the fractional coefficients in the demonimator. We can do this by multiplying the top and bottom by 2x3=6 to get: (6(3x+2)(x-1))/(3x+2).The final step is to cancel terms in the demoninator and numerator that are equal. Cancelling (3x+2) leaves us with the simplified expression; 6(x-1).

Answered by Bobbi L. Maths tutor

3474 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate cos(2x)/(x) with respect to x


Figure 1 shows a sector AOB of a circle with centre O and radius r cm. The angle AOB is θ radians. The area of the sector AOB is 11 cm2 Given that the perimeter of the sector is 4 times the length of the arc AB, find the exact value of r.


complete the square of x^2 + 2x - 6


What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences