Simplify the following algebraic fraction; (3x^2 - x - 2) / ((1/2)x + (1/3)).

First we need to factorise the numerator into two expressions. We can see one expression must start (3x + ?) and the other therefore must hold (x + ?), we know this because the two brackets must multiply together to generate 3x2. Now we need to consider two numbers that will multiply together to give -2, this can be either +1 and -2 or -1 and +2. To gain the required -x in the original expression we see our factorisation must read: (3x +2)(x-1).Now we want to remove the fractional coefficients in the demonimator. We can do this by multiplying the top and bottom by 2x3=6 to get: (6(3x+2)(x-1))/(3x+2).The final step is to cancel terms in the demoninator and numerator that are equal. Cancelling (3x+2) leaves us with the simplified expression; 6(x-1).

BL
Answered by Bobbi L. Maths tutor

4219 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A sequence is defined as: U(n+1) = 1/U(n) where U(1)=2/3. Find the sum from r=(1-100) for U(r)


How do i find dy/dx in terms of t for two parametric equations that are in terms of t.


Can I take a derivative at x=0 for the function f(x) = |x| ?


write the vector equation of a line passing through (1,-1,2) and (2,2,2).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning