ABC is a right angled triangle. D is the point on AB such that AD = 3DB. AC = 2DB and angle A = 90 degrees. Show that sinC = k/√20 where k is an integer. Find the value of k

AB = 4DB

AC = 2DB

Find BC using Pythagoras:

BC = √(4DB)2 + (2DB)2

BC = √20DB2

= √20 DB

sinC = opp/hyp = 4DB/√20DB = 4/√20

so k = 4

TJ
Answered by Tom J. Maths tutor

15925 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

By completing the square, find any turning points and intersects with the x and y axes of the following curve. f(x) = 2x^2 - 12x +7


There are 13 counters in a bag. 4 counters are red, the rest are blue. Alice takes 2 counters without replacing them. What is the probability that both counters are the same colour?


f(x) = 2x+3/x-4 Work out f ^–1 (x)


The functions f and g are such that f(x)=5x+2 and g(x)=-x-4. a) Find fg(x). b) Find ff(x). c) Solve fg(x) = ff(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning