In a science experiment a substance is decaying exponentially. Its mass, M grams, at time t minutes is given by M=300e^(-0.05t). Find the time taken for the mass to decrease to half of its original value.

Firstly, calculate the initial value of of M, by substituting t = 0 into the equation M=300e-0.05tInitially, M0= 300e0=300 x 1 = 300When the substance mass has decreased to half its initial value, M = 0.5 x 300 = 150.Hence, we have the equation 300e-0.05t= 150Solve: e-0.05t= 0.5-0.05t= ln 0.5t = -20ln0.5= 13.8629...= 13.9 (3 s.f.)It will take 13.9 minutes for the substance mass to decrease to half its original value.

BR
Answered by Bony R. Maths tutor

7812 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Expand (1+0.5x)^4, simplifying the coefficients.


Given that y = 4x^3 – 5/(x^2) , x not equal to 0, find in their simplest form (a) dy/dx, and (b) integral of y with respect to x.


let line L have the equation 4y -3x =10, and line M passes through the points (5,-1) and (-1,8), find out if they are perpendicular, parallel, or neither


Find the gradient of the curve with the equation y = x^3+7x^2+1 at x=2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning