In a science experiment a substance is decaying exponentially. Its mass, M grams, at time t minutes is given by M=300e^(-0.05t). Find the time taken for the mass to decrease to half of its original value.

Firstly, calculate the initial value of of M, by substituting t = 0 into the equation M=300e-0.05tInitially, M0= 300e0=300 x 1 = 300When the substance mass has decreased to half its initial value, M = 0.5 x 300 = 150.Hence, we have the equation 300e-0.05t= 150Solve: e-0.05t= 0.5-0.05t= ln 0.5t = -20ln0.5= 13.8629...= 13.9 (3 s.f.)It will take 13.9 minutes for the substance mass to decrease to half its original value.

Answered by Bony R. Maths tutor

6826 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find integers A and B, such that (5x +4)/((2-x)(1+3x)) = A/(2-x) + B/(1+3x)


(C3 question). Find an expression for all stationary points on the curve y=sin(x)cos(x). How many such points are there and why?


Find the equation of the tangent to curve y=5x^2-2x+3 at the point x=0


Given df/dx=2x+3 and the graph goes through (1,1), what is the function f?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences