Show that the equation 5sin(x) = 1 + 2 [cos(x)]^2 can be written in the form 2[sin(x)]^2 + 5 sin(x)-3=0

First, we need to realise that we will be using the trigonometric identity sin(x)2 + cos(x)2 = 1
As our goal is to end up with an equation involving only sin, we will therefore substitue cos(x)2 with ( 1 - sin(x)2 ), giving
5sin(x) = 1 + 2(1-sin(x)2)
We then expand the brackets, getting
5sin(x) = 1 + 2 - 2sin(x)2
We want the final equation to equal 0, so we add make 1+2 equal 3 and subtract it from both sides of the equation:
5sin(x) -3 = -2sin(x)2
we then add 2sin(x)2 on both sides, achieving the wanted equation:
2sin(x)2 + 5sin(x) -3 =0

SG
Answered by Santiago G. Maths tutor

17467 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation (4x^2-y^3+3^2x)=0. The point P (0,1) lies on C: what is the value of dy/dx at P?


What is the sum of the geometric series 1 + 1/3 + 1/9 + 1/27 ...


Differentiate ln(x^3 +2) with respect to x


Show that the equation 2sin^2(x) + 3sin(x) = 2cos(2x) + 3 can be written as 6sin^2(x)+3sin(x) - 5 = 0. Hence solve for 0 < x < 360 degrees. Giving your answers to 1.d.p.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning