Prove that 1 + tan^2 x = sec^2 x

We know that tan x = sin x/cos x and so tan2x = sin2x/cos2x. We also know that sin2x + cos2x = 1 because this is a Pythagorean identity. We can rewrite the left hand side as (cos2x + sin2x)/cos2x because 1 can be rewritten as cos2x/cos2x. Because sin2x + cos2x = 1, we can simplify the numerator of the left hand side, meaning that  (cos2x + sin2x)/cos2x  = 1/cos2x  which is sec2x (the right hand side). Therefore LHS=RHS and we have proven 1 + tan2 x = sec2 x

Answered by Eleanor F. Maths tutor

12738 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a moment and how do I calculate it?


Integration question 1 - C1 2016 edexcel


Show that x^2 - 6x + 11> 0 for all values of x


How to perform integration by substitution. (e.g. Find the integral of (2x)/((4+(3(x^2)))^2)) (10 marks)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences