Prove that 1 + tan^2 x = sec^2 x

We know that tan x = sin x/cos x and so tan2x = sin2x/cos2x. We also know that sin2x + cos2x = 1 because this is a Pythagorean identity. We can rewrite the left hand side as (cos2x + sin2x)/cos2x because 1 can be rewritten as cos2x/cos2x. Because sin2x + cos2x = 1, we can simplify the numerator of the left hand side, meaning that  (cos2x + sin2x)/cos2x  = 1/cos2x  which is sec2x (the right hand side). Therefore LHS=RHS and we have proven 1 + tan2 x = sec2 x

Answered by Eleanor F. Maths tutor

13146 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact solution, in its simplest form, to the equation 2ln(2x+1) - 10 = 0.


Differentiate the following: y=sin(x^2+2)


If I have a ball thrown horizontally with a speed u off a building of height h , how do I calculate its speed when it hits the ground?


Find the tangent to the curve y=x^3+3 at the point x=1.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences