Prove that 1 + tan^2 x = sec^2 x

We know that tan x = sin x/cos x and so tan2x = sin2x/cos2x. We also know that sin2x + cos2x = 1 because this is a Pythagorean identity. We can rewrite the left hand side as (cos2x + sin2x)/cos2x because 1 can be rewritten as cos2x/cos2x. Because sin2x + cos2x = 1, we can simplify the numerator of the left hand side, meaning that  (cos2x + sin2x)/cos2x  = 1/cos2x  which is sec2x (the right hand side). Therefore LHS=RHS and we have proven 1 + tan2 x = sec2 x

EF
Answered by Eleanor F. Maths tutor

18308 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the gradient of the tangent to the curve y=x^2 at the point (4,16)


Find the stationary point on the line of y = 6x - x^2 and state whether this point is a maximum or a minimum


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 + 2x + 3. Given that (x-3) is a factor of f(x), express f(x) in factorised form.


How to find the reciprocal of a graph, such as y=cos(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning