Core 3 Differentiation: If y = (3x^2 + 2x + 5)^10, find its derivative, dy/dx. Hint: Use the chain rule.

The function y = (3x2+2x+5)10 is an example of a "function within a function", which means the thing in the brackets is a function itself, and it's being raised to the power of 10.
This is a straightforward example of a chain rule differentiation question, a very similar one frequently appears on the Core 3 exam, and is good practice to become fluent with. The chain rule says that dy/dx = du/dx * dy/du where 'u' is our function in the brackets.
This is easier to explain through doing the example and with a simple method, rather than a possibly confusing formula:
Take: y = (3x2+2x+5)10, we'll call our substitution 'u', and we'll let u = 3x2+2x+5, the thing in the brackets.
We now have: y = (u)10, and we want to find dy/du. This is done simply by bringing the power down in front and reducing the power by 1, a Core 1 method in polynomial differentation, giving dy/du = 10(u)9
We have our dy/du, we now need du/dx: we said that u = 3x2+2x+5 from earlier, so we simply differentiate this expression term by term with respect to x, this gives us du/dx = 6x + 2.
Finally, combining these two results, we get the expression for dy/dx: dy/dx = (dy/du)*(du/dx) = 10(u)9(6x+2)
Substituting our 'u' back in and tidying the expression up a little gives (60x+20)(3x2+2x+5)9, our derivative.

Related Maths A Level answers

All answers ▸

OCR C2 2015 Question 8: (a) Use logarithms to solve the equation 2^(n-3) = 18,000 , giving your answer correct to 3 significant figures. (b) Solve the simultaneous equations log2(x) + log2(y) = 8 & log2(x^2/y) = 7.


Given y=2x(x^2-1)^5, show that dy/dx = g(x)(x^2-1)^4 where g(x) is a function to be determined.


What is 'e' and where does it come from?


Why does integration by parts work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences