Core 3 Differentiation: If y = (3x^2 + 2x + 5)^10, find its derivative, dy/dx. Hint: Use the chain rule.

The function y = (3x2+2x+5)10 is an example of a "function within a function", which means the thing in the brackets is a function itself, and it's being raised to the power of 10.
This is a straightforward example of a chain rule differentiation question, a very similar one frequently appears on the Core 3 exam, and is good practice to become fluent with. The chain rule says that dy/dx = du/dx * dy/du where 'u' is our function in the brackets.
This is easier to explain through doing the example and with a simple method, rather than a possibly confusing formula:
Take: y = (3x2+2x+5)10, we'll call our substitution 'u', and we'll let u = 3x2+2x+5, the thing in the brackets.
We now have: y = (u)10, and we want to find dy/du. This is done simply by bringing the power down in front and reducing the power by 1, a Core 1 method in polynomial differentation, giving dy/du = 10(u)9
We have our dy/du, we now need du/dx: we said that u = 3x2+2x+5 from earlier, so we simply differentiate this expression term by term with respect to x, this gives us du/dx = 6x + 2.
Finally, combining these two results, we get the expression for dy/dx: dy/dx = (dy/du)*(du/dx) = 10(u)9(6x+2)
Substituting our 'u' back in and tidying the expression up a little gives (60x+20)(3x2+2x+5)9, our derivative.

Answered by Maths tutor

5746 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate exp(2x)cos(8x) by parts


I know how to integrate, but I still never see any real world example of it, so it is difficult to understand. Why is it useful?


Find dy/dx in terms of t for the curve given by the parametric equations x = tan(t) , y = sec(t) for -pi/2<t<pi/2.


Find the area enclosed between C, the curve y=6x-x^2, L, the line y=16-2x and the y axis.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning