Core 3 Differentiation: If y = (3x^2 + 2x + 5)^10, find its derivative, dy/dx. Hint: Use the chain rule.

The function y = (3x2+2x+5)10 is an example of a "function within a function", which means the thing in the brackets is a function itself, and it's being raised to the power of 10.
This is a straightforward example of a chain rule differentiation question, a very similar one frequently appears on the Core 3 exam, and is good practice to become fluent with. The chain rule says that dy/dx = du/dx * dy/du where 'u' is our function in the brackets.
This is easier to explain through doing the example and with a simple method, rather than a possibly confusing formula:
Take: y = (3x2+2x+5)10, we'll call our substitution 'u', and we'll let u = 3x2+2x+5, the thing in the brackets.
We now have: y = (u)10, and we want to find dy/du. This is done simply by bringing the power down in front and reducing the power by 1, a Core 1 method in polynomial differentation, giving dy/du = 10(u)9
We have our dy/du, we now need du/dx: we said that u = 3x2+2x+5 from earlier, so we simply differentiate this expression term by term with respect to x, this gives us du/dx = 6x + 2.
Finally, combining these two results, we get the expression for dy/dx: dy/dx = (dy/du)*(du/dx) = 10(u)9(6x+2)
Substituting our 'u' back in and tidying the expression up a little gives (60x+20)(3x2+2x+5)9, our derivative.

Related Maths A Level answers

All answers ▸

The graph with equation y= x^3 - 6x^2 + 11x - 6 intersects the x axis at 1, find the other 2 points at which the graph intersects the x axis


Using the "complete the square" method, solve the following x^2 +4x - 21 =0


Find, w.r.t to x, both the derivative and integral of y=6*sqrt(x)


Integrate: xe^x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences