Find the equation of the tangent to curve y=5x^2-2x+3 at the point x=0

y=5x2-2x+3 Differentiate to find the equation of the gradient of the curve
dy/dx=10x-2 Substitute x=0 to find the gradient at the point x=0
dy/dx=-2

y=50^2-20+3 Substitute x=0 into the original equation to find y at that point
y=3

y=mx+c Using y=mx+c and substituting x=0, y=3 and m=-2 to find c
3=-2*0+c
c=3 Substitute m=-2 and c=3 to find the equation of the tangent
y=-2x+3

Answered by Maths tutor

5835 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y = 2(x^2+1)^3, what is dy/dx?


Express 8/((root3) -1)) in the form a(root3) +b, where a and b are integers.


How can I try and solve this differentiation, I don`t understand it?


Prove that the indefinite integral of I = int(exp(x).cos(x))dx is (1/2)exp(x).sin(x) + (1/2)exp(x).cos(x) + C


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning