Find the equation of the tangent to curve y=5x^2-2x+3 at the point x=0

y=5x2-2x+3 Differentiate to find the equation of the gradient of the curve
dy/dx=10x-2 Substitute x=0 to find the gradient at the point x=0
dy/dx=-2

y=50^2-20+3 Substitute x=0 into the original equation to find y at that point
y=3

y=mx+c Using y=mx+c and substituting x=0, y=3 and m=-2 to find c
3=-2*0+c
c=3 Substitute m=-2 and c=3 to find the equation of the tangent
y=-2x+3

Related Maths A Level answers

All answers ▸

A ball of mass m moves towards a ball of mass km with speed u. The coefficient of restitution is 0. What is the final velocity if the first ball after the collision.


Does the equation: x^2+5x-6 have two real roots? If so what are they?


What is the equation of the normal line to the curve y = 3x^3 - 6x^2 at the point (1, 4)?


Solve 4x/(x+1) - 3/(2x+1) = 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences