Answers>Maths>IB>Article

integrate arcsin(x)

Use integration by parts to obtain:u=arcsin(x), u'=1/(1-x2)0.5, and v'=1, v=x
Using the equation: integral of uv' = uv - integral of u'vintegral of arcsin(x) = xarcsin(x) - integral of x/(1-x2)0.5
Use integration by substitution to obtain to integrate x/(1-x2)0.5:u=1-x2, du/dx=-2x, dx=-du/2xThe integral becomes: -1/2u0.5Solving using the power rules, the solution is: -u0.5Solving back using x: -(1-x2)0.5
Thus, the final solution becomes: xarcsin(x)+(1-x2)0.5+c

Answered by Maya G. Maths tutor

1397 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Consider the functions f and g where f(x)=3x-5 and g(x)=x-2. (a) Find the inverse function for f. (b) Given that the inverse of g is x+2, find (g-1 o f)(x).


log8(5) = b. Express log4(10) in terms of b


How do I show (2n)! >= 2^n((n!)^2) for every n>=0 by induction?


What is the equation of the tangent drawn to the curve y = x^3 - 2x + 1 at x = 2?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences