Given that x = i is a solution of 2x^3 + 3x^2 = -2x + -3, find all the possible solutions

x = i is a solution, and all the coefficients are real, so x = -i must also be a solution:2x^3+3x^2+2x+3 = 0(x+i)(x-i)(Ax+B) = 0 (we argued above that this must be the case)(x^2+1)(Ax+B) = 0(x^2+1)(2x+3) = 0 (we identify A and B by comparing to the first line)Therefore x = -3/2 is the third solution, and we have all the solutions

Related Further Mathematics A Level answers

All answers ▸

find the sum of r from 0 to n of : 1/((r+1)(r+2)(r+3))


A child weighing 50kg is pushed down a 2m long slide (u=0.1), angled at 45 degrees from the horizontal, at 5m/s. At what speed does the child reach the bottom of the slide?


Solve the following complex equation: '(a + b)(2 + i) = b + 1 + (10 + 2a)i' to find values for 'a' and 'b'


Prove by induction that for all positive integers n , f(n) = 2^(3n+1) + 3*5^(2n+1) , is divisible by 17.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences