Given that x = i is a solution of 2x^3 + 3x^2 = -2x + -3, find all the possible solutions

x = i is a solution, and all the coefficients are real, so x = -i must also be a solution:2x^3+3x^2+2x+3 = 0(x+i)(x-i)(Ax+B) = 0 (we argued above that this must be the case)(x^2+1)(Ax+B) = 0(x^2+1)(2x+3) = 0 (we identify A and B by comparing to the first line)Therefore x = -3/2 is the third solution, and we have all the solutions

Related Further Mathematics A Level answers

All answers ▸

Convert the general complex number z=x+iy to modulus-argument form.


The point D has polar coordinates ( 6, 3π/4). Find the Cartesian coordinates of D.


How do you plot a complex number in an Argand diagram?


solve 3sinh^2(2x) + 11sinh(2x) = 4 for x, giving your answer(s) in terms of the natural log.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences