Given that x = i is a solution of 2x^3 + 3x^2 = -2x + -3, find all the possible solutions

x = i is a solution, and all the coefficients are real, so x = -i must also be a solution:2x^3+3x^2+2x+3 = 0(x+i)(x-i)(Ax+B) = 0 (we argued above that this must be the case)(x^2+1)(Ax+B) = 0(x^2+1)(2x+3) = 0 (we identify A and B by comparing to the first line)Therefore x = -3/2 is the third solution, and we have all the solutions

Related Further Mathematics A Level answers

All answers ▸

Solve the following, giving your answers in terms of ln a: 7 sechx - tanhx =5


The quadratic equation x^2-6x+14=0 has roots alpha and beta. a) Write down the value of alpha+beta and the value of alpha*beta. b) Find a quadratic equation, with integer coefficients which has roots alpha/beta and beta/alpha.


Find the general solution to: d^(2)x/dt^(2) + 7 dx/dt + 12x = 2e^(-t)


Find all of the roots of unity, Zn, in the case that (Zn)^6=1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences