Using the substitution x = 2cosu, find the integral of dx/((x^2)(4-x^2)^1/2), evaluated between x=1 and x=sqrt(2).

Starting with x=2cosu, rearrange for u to get u=arccos(x/2), then find the upper and lower limits of the integral. We find that our lower limit goes from 1 to pi/3, ad our upper limit goes from root 2 to pi/4.
Now to find the derivative of x, dx, in terms of the derivative of u, du. Find dx/du, which is simply
dx/du = -2sinu.
Thus, dx = -2sinudu.
Now substitute our x's for our equations in terms of u, as well as the upper and lower limits. The root(4-x2) term becomes root(4-4cos2u), which simply becomes 2sinu after we make use of the identity sin2x = 1 - cos2x. This 2sinu term in the denominator cancels with the 2sinu term in the numerator, which we got from subbing dx with -2sinudu.
Now our integral is simply -1/4 sec2u du, giving us
I = -1/4 tanu,
evaluated between u= pi/4 and u = pi/3. We may flip our limits and multiply our equation by minus 1 so that our upper limit is now a larger number than the lower limit, but this does not change the answer.
Evaluate to get the answer to be (-1+sqrt(3))/4.

Answered by Tayn D. Maths tutor

7270 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate using the chain rule?


Given that y = 5x(3) + 7x + 3, find A) dy/dx B) d2y/dx2


What is the sum of the geometric series 1 + 1/3 + 1/9 + 1/27 ...


Differentiate y=(sin(x))^(2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences