How can I remember when a turning point of a function is a maximum or a minimum?

The key is to look at the first and second derivatives of that function. Remember that a turning point always has the first derivative equal to zero. Then, the sign of the second derivative indicates if that turning point is either a maximum or a minimum. If the second derivative is negative than remember that the shape of the function resembles a hill (the function is concave) and the highest point can only be a maximum as the function decreases on both sides. If the second derivative is positive, then the graph of the function looks like a cavity (the function is convex) and the turning point is a minimum as its the lowest lying point of that function.

Answered by Titus D. Maths tutor

5897 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is integration?


What is integration?


Differentiate y=(x-1)^4 with respect to x.


A tank is filled with water up to the height H0. At the bottom of the tank, there is a tap which is opened at t=0. How does the height of liquid change with time?(Hint: dH/dt is proportional to -H)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences