How can I remember when a turning point of a function is a maximum or a minimum?

The key is to look at the first and second derivatives of that function. Remember that a turning point always has the first derivative equal to zero. Then, the sign of the second derivative indicates if that turning point is either a maximum or a minimum. If the second derivative is negative than remember that the shape of the function resembles a hill (the function is concave) and the highest point can only be a maximum as the function decreases on both sides. If the second derivative is positive, then the graph of the function looks like a cavity (the function is convex) and the turning point is a minimum as its the lowest lying point of that function.

Answered by Titus D. Maths tutor

6536 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove, using the product rule that, the derivative of x^{n} is nx^{n-1} where n is a natural number. What if n is an integer or n is rational?


integration by parts: x^-2lnx


Find the exact solution to ln(2y+5) = 2 + ln(4-y)


What is the Product Rule?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences