How can I remember when a turning point of a function is a maximum or a minimum?

The key is to look at the first and second derivatives of that function. Remember that a turning point always has the first derivative equal to zero. Then, the sign of the second derivative indicates if that turning point is either a maximum or a minimum. If the second derivative is negative than remember that the shape of the function resembles a hill (the function is concave) and the highest point can only be a maximum as the function decreases on both sides. If the second derivative is positive, then the graph of the function looks like a cavity (the function is convex) and the turning point is a minimum as its the lowest lying point of that function.

TD
Answered by Titus D. Maths tutor

7354 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the chain rule?


find the coordinates of the turning points of the curve y = 2x^4-4x^3+3, and determine the nature of these points


How do I find dy/dx for a given equation, once this is found how do I find the value of x such that dy/dx = 0.


Explain how integration via substitution works.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning