The numbers a, b, c and d satisfy the following equations: a + b + 3c + 4d = k; 5a = 3b = 2c = d. What is the smallest value for k for which a, b, c and d are all positive integers

  1. 5a = 3b = 2c = d. d must be a multiple of 5, 3 and 2, therefore the smallest possible value for d is 30. This sets a = 6, b = 10 and c = 152) a + b + 3c + 4d = 6 + 10 + 3x15 + 4x30 = 181 k = 181
MH
Answered by Michael H. Maths tutor

4544 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the area bounded by the curve y=-x^2+4 and the line y=-x+2?


Solve for 0=<x<360 : 2((tanx)^2) + ((secx)^2) = 1


The curve C has the equation (x^2)+4xy-8(y^2)+27=0. Find dy/dx in terms of x and y.


What is the sum of the geometric series 1 + 1/3 + 1/9 + 1/27 ...


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning