The numbers a, b, c and d satisfy the following equations: a + b + 3c + 4d = k; 5a = 3b = 2c = d. What is the smallest value for k for which a, b, c and d are all positive integers

  1. 5a = 3b = 2c = d. d must be a multiple of 5, 3 and 2, therefore the smallest possible value for d is 30. This sets a = 6, b = 10 and c = 152) a + b + 3c + 4d = 6 + 10 + 3x15 + 4x30 = 181 k = 181
Answered by Michael H. Maths tutor

3954 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate f(x) with respect to x. Find the stationary value and state if it is a maxima, minima or point of inflection f(x) = 6x^3 + 2x^2 + 1


Find the minimum value of the function, f(x)= x^2 + 5x + 2, where x belongs to the set of Real numbers


Find the gradient of the curve y = x^2(ln(x)) at x = e


How do I simply differentiate and what does a differential mean?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences