The numbers a, b, c and d satisfy the following equations: a + b + 3c + 4d = k; 5a = 3b = 2c = d. What is the smallest value for k for which a, b, c and d are all positive integers

  1. 5a = 3b = 2c = d. d must be a multiple of 5, 3 and 2, therefore the smallest possible value for d is 30. This sets a = 6, b = 10 and c = 152) a + b + 3c + 4d = 6 + 10 + 3x15 + 4x30 = 181 k = 181
Answered by Michael H. Maths tutor

4001 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the most important trig identities we need to know?


Find the curve whose gradient is given by dy/dx=xy and which passes through the point (0,3)


The Curve, C, has equation: x^2 - 3xy - 4y^2 +64 =0 Find dy/dx in terms of x and y. [Taken from Edexcel C4 2015 Q6a]


Why does the product rule for differentiating functions work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences