Given that cos(x) = 1/4, what is cos(2x)?

cos(2x) = 2cos2(x) - 1 This is the identity. Therefore we can substitute in 2[cos2(x)] to be 2 multiplied by (1/4)2.Therefore cos(2x) = 2(1/4)(1/4) - 1 = 2/16 - 1 = 2/16 - 16/16 =1/8 - 8/8 = -(7/8).Ans. = - 7/8.

Answered by Bhumi K. Maths tutor

8249 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the expression cos^2(x).


What does dy/dx represent?


Differentiate f(x) = (x+3)/(2x-5) using the quotient rule.


A small stone is projected vertically upwards from a point O with a speed of 19.6m/s. Modelling the stone as a particle moving freely under gravity, find the length of time for which the stone is more than 14.7 m above O


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences