The perimeter of a right-angled triangle is 72 cm. The lengths of its sides are in the ratio 3 : 4 : 5 Work out the area of the triangle

Perimeter= 72Ratios are 3:4:5In total, you can think of there being 3+4+5=12 "portions".This means that in the perimeter includes 12 portions. 72/12=6 so each portion is worth 6cm.
Now we can work out the length of each side.3:4:5 scaled up by 6 (recall that each portion is worth 6cm) yields sides of lengths 18cm, 24cm and 30 cm.
Note that the question says that it is a right angled triangle, therefore, we can use the formula for the area of a right angled triangle (1/2 x a x b).
Does it matter what you set a and b as? Yes, because neither a nor b are the hypotenuse. In our triangle, the hypotenuse will be 30cm (the longest length) so our a and b must be 18 and 24.
1/2 x 18 x 24 = 216cm^2

NA
Answered by Natasha A. Maths tutor

2785 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the inequality 5x - 7 > 2x +5


Adam gets a bonus of 30% of £80. Katy gets a bonus of £28. Work out the difference between the bonus Adam gets and the bonus Katy gets.


Celine has £5 to buy pens and rubbers. Pens are 18p each. Rubbers are 30p each. She says “I will buy 15 pens. Then I will buy as many rubbers as possible. With my change I will buy more pens.” How many pens and how many rubbers does she buy? [5 marks]


The y-intercept of A is 7. A also passes through point (7, 2). (a) Find an equation of A in the form y = mx + c. (b) B is perpendicular to A and also has a y-intercept of 7. Write down the equation for B in the form y = mx + c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning