f(x) = sinx. Using differentiation from first principles find the exact value of f' (π/6).

The derivative of the function where x=π/6 is defined asThe limit as h->0 of [sin(h+π/6)-sin(π/6)]/hUsing the double angle formula, sin(h+π/6) = sin(h)cos(π/6) + cos(h)sin(π/6) = √3sin(h)/2 + cos(h)sin(π/6)The limit becomes [sin(h)/2 + cos(h)sin(π/6)-sin(π/6)]/hThe limit can be broken up into two partslim as h->0 of [cos(h)sin(π/6)-sin(π/6)]/h = 0 (could use l'Hospital's rule or half angle formula)lim as h->0 of [√3sin(h)/2]/h = 1/2 (small angle approximation)0+√3/2=√3/2

Answered by Maths tutor

6866 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=x^2+4x+12


How do you find the equation of a tangent to a curve at a certain point, from the equation of the curve?


f(x) = x^3 + 3x^2 + 5. Find f'(x) and f''(x).


Using Discriminants to Find the Number of Roots of a Quadratic Curve


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences