f(x) = sinx. Using differentiation from first principles find the exact value of f' (π/6).

The derivative of the function where x=π/6 is defined asThe limit as h->0 of [sin(h+π/6)-sin(π/6)]/hUsing the double angle formula, sin(h+π/6) = sin(h)cos(π/6) + cos(h)sin(π/6) = √3sin(h)/2 + cos(h)sin(π/6)The limit becomes [sin(h)/2 + cos(h)sin(π/6)-sin(π/6)]/hThe limit can be broken up into two partslim as h->0 of [cos(h)sin(π/6)-sin(π/6)]/h = 0 (could use l'Hospital's rule or half angle formula)lim as h->0 of [√3sin(h)/2]/h = 1/2 (small angle approximation)0+√3/2=√3/2

Answered by Maths tutor

7386 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I remember how to differentiate and integrate cos and sin?


Find the first derivative of 2x^3+5x^2+4x+1 (with respect to x)


Core 3 Differentiation: If y = (3x^2 + 2x + 5)^10, find its derivative, dy/dx. Hint: Use the chain rule.


Find the equation of the straight line tangent to the curve y=2x^3+3x^2-4x+7, at the point x=-2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning