f(x) = sinx. Using differentiation from first principles find the exact value of f' (π/6).

The derivative of the function where x=π/6 is defined asThe limit as h->0 of [sin(h+π/6)-sin(π/6)]/hUsing the double angle formula, sin(h+π/6) = sin(h)cos(π/6) + cos(h)sin(π/6) = √3sin(h)/2 + cos(h)sin(π/6)The limit becomes [sin(h)/2 + cos(h)sin(π/6)-sin(π/6)]/hThe limit can be broken up into two partslim as h->0 of [cos(h)sin(π/6)-sin(π/6)]/h = 0 (could use l'Hospital's rule or half angle formula)lim as h->0 of [√3sin(h)/2]/h = 1/2 (small angle approximation)0+√3/2=√3/2

Answered by Maths tutor

7695 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the straight line that passes through the points (1,2) and (2,4)


How does finding the gradient of a line and the area under a graph relate to real world problems?


Given that y = 8x + 2x^-1, find the 2 values for x for which dy/dx = 0


using the substitution u=6-x^2 integrate (x^3)/(6-x^2)^1/2 with respect to x, between 1 and 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning