A box initially at rest is on a plank, of length 5m, that is elevated at an angle such that tan(a)=3/4. When it reaches the end of the plank it has velocity 5ms^-1. Calculate the average frictional force on the box.

In physics questions it is useful to not plug numbers in until the end and instead work through algebraically. Let's say the angle of elevation is a, the mass is m, the velocity at the end of the plank is v and the length is L.Going down the plank the box converts its potential energy into kinetic energy. The discrepancy between the change in potential energy and the change in the kinetic energy will be due to energy loss due to friction.The change in potential is U=mgLsin(a)The change in kinetic energy is K=1/2 mv2ELoss= U-K = mgLsin(a)-1/2 mv2 The frictional force will be roughly constant across the plank as the normal contact force is constant, therefore ELoss+FFrictionxL=> FFriction= m( gsin(a) - 1/2 mv2/L ) = 8.5N

Answered by Physics tutor

1909 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe and explain the vertical motion of a parachutist which jumps out of an aeroplane at time t=0 and then releases the parachute shortly after reaching terminal velocity at time t=T. (Assume air resistance is not negligible).


How might you use sound waves to smash a glass? What are other examples of resonance in everyday life?


When catching a ball, a cricketer moves his hands for a short distance in the direction of travel of the ball as it makes contact with his hands. Explain why this technique results in less force being exerted on the cricketer's hands


Single electrons travelling at 550 ms^-1 are passed through a diffraction grating with a spacing between the slits of 2.5 micrometers. What would the angle between the zeroth and first maximum of the resulting interference pattern be?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning