A box initially at rest is on a plank, of length 5m, that is elevated at an angle such that tan(a)=3/4. When it reaches the end of the plank it has velocity 5ms^-1. Calculate the average frictional force on the box.

In physics questions it is useful to not plug numbers in until the end and instead work through algebraically. Let's say the angle of elevation is a, the mass is m, the velocity at the end of the plank is v and the length is L.Going down the plank the box converts its potential energy into kinetic energy. The discrepancy between the change in potential energy and the change in the kinetic energy will be due to energy loss due to friction.The change in potential is U=mgLsin(a)The change in kinetic energy is K=1/2 mv2ELoss= U-K = mgLsin(a)-1/2 mv2 The frictional force will be roughly constant across the plank as the normal contact force is constant, therefore ELoss+FFrictionxL=> FFriction= m( gsin(a) - 1/2 mv2/L ) = 8.5N

Related Physics A Level answers

All answers ▸

Show that a pendulum undergoes simple harmonic motion (SHM). State your assumptions. The pendulum is made up of a light inextensible string, attached to a ceiling at one end and with a particle of mass m attached to the other end.


By referencing the magnetic field and the alternating potential difference explain how a cyclotron produces a beam of high speed particles.


In a particle accelerator, you accelerate an electron. Afterwards, you measure it's energy to be 350 keV. Tell my why you can't find the speed from this energy using your knowledge of classical mechanics.


A spacecraft called Deep Space 1, mass 486 kg, uses an “ion-drive” engine which expels 0.13 kg of xenon propellant each day at 30kms^-1. What is the initial increase in speed of the spacecraft


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences