A box initially at rest is on a plank, of length 5m, that is elevated at an angle such that tan(a)=3/4. When it reaches the end of the plank it has velocity 5ms^-1. Calculate the average frictional force on the box.

In physics questions it is useful to not plug numbers in until the end and instead work through algebraically. Let's say the angle of elevation is a, the mass is m, the velocity at the end of the plank is v and the length is L.Going down the plank the box converts its potential energy into kinetic energy. The discrepancy between the change in potential energy and the change in the kinetic energy will be due to energy loss due to friction.The change in potential is U=mgLsin(a)The change in kinetic energy is K=1/2 mv2ELoss= U-K = mgLsin(a)-1/2 mv2 The frictional force will be roughly constant across the plank as the normal contact force is constant, therefore ELoss+FFrictionxL=> FFriction= m( gsin(a) - 1/2 mv2/L ) = 8.5N

Related Physics A Level answers

All answers ▸

The friction coefficient of Formula 1 car tyres are around 1.7 in dry weather. Assuming sufficient power from the engine, calculate the theoretical best 0-100 km/h acceleration time in seconds. (neglect downforce, g=9.81m/s^2)


Discuss how the graph of orbital velocities in rotational galaxies against distance from the galactic centre implies the existence of dark matter.


What is the difference between electromotive force and potential difference?


A block of mass m is released from rest on a surface inclined at 30⁰ to the horizontal with a coefficient of friction of 0.3. How long does it take for the block to slide 1 m?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences