A box initially at rest is on a plank, of length 5m, that is elevated at an angle such that tan(a)=3/4. When it reaches the end of the plank it has velocity 5ms^-1. Calculate the average frictional force on the box.

In physics questions it is useful to not plug numbers in until the end and instead work through algebraically. Let's say the angle of elevation is a, the mass is m, the velocity at the end of the plank is v and the length is L.Going down the plank the box converts its potential energy into kinetic energy. The discrepancy between the change in potential energy and the change in the kinetic energy will be due to energy loss due to friction.The change in potential is U=mgLsin(a)The change in kinetic energy is K=1/2 mv2ELoss= U-K = mgLsin(a)-1/2 mv2 The frictional force will be roughly constant across the plank as the normal contact force is constant, therefore ELoss+FFrictionxL=> FFriction= m( gsin(a) - 1/2 mv2/L ) = 8.5N

Related Physics A Level answers

All answers ▸

A car undergoes uniform acceleration from a starting velocity of 10ms^-1 to 20ms^-1 in 10s. Assuming the car's mass is 2000kg, calculate the net force in the direction of the acceleration.


What is the difference between a vector and a scalar quantity?


In a particle accelerator, you accelerate an electron. Afterwards, you measure it's energy to be 350 keV. Tell my why you can't find the speed from this energy using your knowledge of classical mechanics.


What is the stress in a cylindrical rod of 10.0cm diameter when loaded by 50.0N force at each end?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences