Solve: a) 5t + 17 = 2. b) x^3 - 25 = 103 - x^3.

a) 5t + 17 = 2. We want to work out what t is. t = ?.To do this we need to get t on it's own, so first we move all the other numbers to equal t.We do this by subtracting 17 from both sides and we should find that 5t = -15.Now we have 5t but we need to divide both sides by 5 to get just the value of t, so since -15/5 = -3... t = -3.b) x3- 25 = 103 - x3. The same applies here, we want to find the value of x.So first we get all the x's on one side: 2x3 = 128Then we can half the value on both sides to find that x3 = 64.Now we need to get rid of the cube on the x, so must find the cube root of both sides. The cube root of 64 is 4. So x = 4.

JA
Answered by James A. Maths tutor

3156 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Bob lives 2km away from Alice and the school is 1km away from Bob. Alice sets off to meet Bob at 8am and she meets him at 8:15 and they carry on walking at the same pace. School starts at 8:20. Do they get to school on time? How early/late are they?


L is a line parallel to 4x-2y=8. Find the equation of the line if L passes through (4,(38/3))


Express 300 as a product of its prime factors.


Find the points at which the equation y = x^2 - 12x + 35 intersects the x-axis.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning