Solve algebraically the simultaneous equations x^2 + y^2 = 25 and y - 3x = 13

Start to solve by substitution: eqn 1 x^2 + y^2 = 25eqn 2 y - 3x = 13 => y = 3x + 13Substitute eqn 2 into 1: x^2 + (3x +13)^2 = 25expand and simplify the equation ...5x^2 + 39x + 72 = 0Factorise the equation: (5x+24)(x+3) = 05x = -24 => x = -24/5x = -3Substitute back into equation 2 to find equivalent y values: x = -3 and y = 4, x = -24/5 and y = -7/5

RR
Answered by Rosita R. Maths tutor

3005 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The value of a new car is £18,000. The value of the car decreases by 25% in the first year and 12% in each of the next 4 years. Work out the value of the car after 5 years?


Work out the number of people in the office.


Solve this simultaneous equation: 6x+2y = 26 and 8x + 3y = 32


Anna and Lionel share $675 in the ratio 4 : 5 Lionel gives 3 5 of his share of the money to his mother. How much money does Lionel give to his mother?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning