Find the stationary points of y = x^3 -3x^2 - 9x +5

A stationary point is a point where dy/dx = 0.First we need to find dy/dx. This is done by differentiating y term by term to get dy/dx = 3x^2 - 6x - 9.Setting this equal to zero, we need to solve 3x^2 - 6x - 9 = 0.This equation can be simplified by dividing both sides by 3.So we need to solve x^2 - 2x - 3 = 0.Completing the square, we get (x - 1)^2 - 4 = 0.Add 4 to both sides to get (x - 1)^2 = 4.We see that x = 3, x = -1 are the two solutions. Now to find the y values, we must sub in x = -1 and x = 3 into y = x^3 - 3x^2 - 9x + 5.For x = 3, we get y = --22, and for x = -1, we get y = 10.So the two stationary points are (3,-22) and (-1,10)

Answered by Adam S. Maths tutor

4777 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 3(2x + 5) = 4 – x


Solve the simultaneous equations x+2y=4 and x-3y=6


A school has a number of students. One is chosen at random; the probability that the student is female is 2/5. Knowing that there are 174 male students, work out the total number of students in the school.


If x:y=7:4 and x + y = 88, work out the value of x – y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences