Differentiate Sin^2(X) with respect to X

'With respect to X' means we will be differentiating all the X parts (To put it simply). First we show that the differential of Sin(X) is Cos(X), we can show this graphically using the whiteboard. Then we should know from previous lessons that the differential of X^2 is 2X (We can show this with the formal definition of a differential using diagrams as aids). We then combine these two rules using a substitution for Sin(X) = U, still differentiating with respect to X (not U). Several lines of working and explaining will lead to the answer of 2Cos(x)Sin(x).

TH
Answered by Thomas H. Maths tutor

13454 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of xcosx(dx)


A curve has the equation (x+y)^2 = xy^2. Find the gradient of the curve at the point where x=1


"Solve cos(3x +20) = 0.6 for 0 < x < 360" - why are there more than one solution, and how do I find all of them?


How do i know where a stationary point is and what type of stationary point it is?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences