Differentiate Sin^2(X) with respect to X

'With respect to X' means we will be differentiating all the X parts (To put it simply). First we show that the differential of Sin(X) is Cos(X), we can show this graphically using the whiteboard. Then we should know from previous lessons that the differential of X^2 is 2X (We can show this with the formal definition of a differential using diagrams as aids). We then combine these two rules using a substitution for Sin(X) = U, still differentiating with respect to X (not U). Several lines of working and explaining will lead to the answer of 2Cos(x)Sin(x).

Answered by Thomas H. Maths tutor

12442 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C is paramterised by the equations: x = 5t + 3 ; y = 2 / t ; t > 0 Find y in terms of x and hence find dy/dx


F = 5i + 3j. Find the magnitude and direction of F?


Differentiate sin(2x)/x^2 w.r.t. x


The gradient of a curve is given by dy/dx = 3 - x^2. The curve passes through the point (6,1). Find the equation of the curve.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences