A curve has the equation y = x^4 - 8x^2 + 60x + 7. What is the gradient of the curve when x = 6?

To find the gradient of any curve, we take the derivative. So in this case, we need to take dy/dx. We do this by multiplying the term by the power on x, and then lowering the power by one. For example, for the first term, x4, the power is four, so we multiply x4 by four, and the power becomes three, so we have 4x3. We repeat this for all of the terms individually to get dy/dx = 4x-16x +60. That gives us the gradient at any point. To get the gradient at x = 6 we need to substitute the value in to the new equation, so we get dy/dx = 4 * 63 - 16 * 6 + 60 = 828

Answered by Elizabeth H. Maths tutor

4969 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the tangent and the normal to the curve f(x)= 4x^3 - 7x - 10 at the point (2, 8)


Find the equation of the straight line passing through the origin that is tangent to the curve y = ln(x).


The sum of the first K natural numbers is 300. Find the value of K.


How do you find the angle between two lines in three dimensional vector space given two points on line 1 and the vector equation of line 2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences