A curve has the equation y = x^4 - 8x^2 + 60x + 7. What is the gradient of the curve when x = 6?

To find the gradient of any curve, we take the derivative. So in this case, we need to take dy/dx. We do this by multiplying the term by the power on x, and then lowering the power by one. For example, for the first term, x4, the power is four, so we multiply x4 by four, and the power becomes three, so we have 4x3. We repeat this for all of the terms individually to get dy/dx = 4x-16x +60. That gives us the gradient at any point. To get the gradient at x = 6 we need to substitute the value in to the new equation, so we get dy/dx = 4 * 63 - 16 * 6 + 60 = 828

EH
Answered by Elizabeth H. Maths tutor

5146 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the normal to the curve x^3 + 2(x^2)y = y^3 + 15 at the point (2, 1)


A 2.4 m long plank of mass 20kg has 2 pins, each 0.5 meters from each respective plank end. A person of mass 40kg stands on the plank 0.1m from one of the pins. Calculate the magnitude of reactions at the pins for this structure to be in equilibrium.


Differentiate with respect to x: (6x + 7)e^x


Solve x(5(3^0.5)+4(12^0.5))=(48^0.5) to the simplest form. (4 Marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences