Show algebraically that (4n-3)^2 - (2n+5)^2 is always a multiple of n-4

First we expand the brackets by squaring each side(4n-3)2 = (4n-3)(4n-3)= 16n2 - 24n + 9(2n+5)2 = (2n+5)(2n+5)= 4n2 + 20n + 25Remember the expression is (4n-3)2 - (2n+5)2 so we subtract the expanded second expression from the first16n2 - 24n + 9 - (4n2 + 20n + 25)= 16n2 - 24n + 9 - 4n2 -20n - 25= 12n2 - 44n - 4To simplify we can factorise by 44 (3n2 - 11n - 1)Then if we factorise the quadratic in the brackets we get4 (3n + 1)(n - 4)As the expression contains (n - 4), this means that (4n-3)2 - (2n+5)2 is always a multiple of (n - 4)

Answered by Ella B. Maths tutor

2805 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify (x+6)(x-6)


Express x^2+8x+15 in the form (x+a)^2-b


Solve the two equations: Equation 1: 2a - 5b = 11 Equation 2: 3a + 2b = 7


How do you work out the old price of an item having been given the new price after a specified percentage change?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences