Show algebraically that (4n-3)^2 - (2n+5)^2 is always a multiple of n-4

First we expand the brackets by squaring each side(4n-3)2 = (4n-3)(4n-3)= 16n2 - 24n + 9(2n+5)2 = (2n+5)(2n+5)= 4n2 + 20n + 25Remember the expression is (4n-3)2 - (2n+5)2 so we subtract the expanded second expression from the first16n2 - 24n + 9 - (4n2 + 20n + 25)= 16n2 - 24n + 9 - 4n2 -20n - 25= 12n2 - 44n - 4To simplify we can factorise by 44 (3n2 - 11n - 1)Then if we factorise the quadratic in the brackets we get4 (3n + 1)(n - 4)As the expression contains (n - 4), this means that (4n-3)2 - (2n+5)2 is always a multiple of (n - 4)

EB
Answered by Ella B. Maths tutor

3479 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 5 red balls and 7 green balls in a bag. A ball is taken from the bag at random and not replaced. Then a second ball is taken from the bag. What is the probability that the 2 balls are the same colour?


Solve x^2 - 9 = 4x + 12


A particle P of mass 0.4 kg is moving under the action of a constant force F newtons. Initially the velocity of P is (6i – 27j) m s−1 and 4 s later the velocity of P is (−14i + 21j) m s−1 . Find, in terms of i and j, the acceleration of P.


Show that (x + 1)(x + 2)(x + 3) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning