Answers>Maths>IB>Article

Solve the equation sec^2(x) - 4tan(x)= -3 , 0 ≤x≤ 2π

To solve this problem, we have to look at some trig. identities that will help us simplify the problem.The formula booklet is always a great place to start! You can find that sec^2(x) = 1 + tan^2(x). Substituting this into the equation yields tan^2(x) + 1 - 4tan(x) = -3 Move the three over, and you will have tan^2(x) - 4tan(x) + 4 = 0 From here, you can factorize to [ tan(x) - 2 ] ^2 = 0, which gives you tan x = 2arctan(2) = 1.01 radians (63.4 degrees), 4.25 radians (243.4 degrees)
One common point that catches people out is they forget to put two solutions instead of one. Remember, that for any trigonometric function, it will repeat itself in a cyclical manner. Think of the graph, and even sketch it out to get a rough idea of where your solutions will fall, so that you can reach the answer more quickly and accurately

PH
Answered by Patrick H. Maths tutor

2778 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

What is the limit for this function as x approaches 0? y(x)=(cos x)^(1/sin x)


A scalene triangle has base of 5cm. The angle opposite to the base is 63°, and a second angle is 72°. Find the area of the traingle


Sketch the graph of x^2 - y^2 = 16


The velocity, v, of a moving body at time t is given by v = 50 - 10t. A) Find its acceleration. B) The initial displacement, s, is 40 meters. Find an expression for s in terms of t.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences