ABC is a triangle with sides of length AB, 12m and BC,14m. Angle ACB = 43 degrees. Find the area of the triangle.

Use of the Sine Rule to ultimately work out the area of a triangleA/SinA = B/SinB14/Sin43 = 12/SinX14SinX = 12Sin43SinX = 12Sin43/14X=InverseSin(12Sin43/14) = 35.77-There are 180 degrees in triangle. Therefore, to work out the remaining angle we must subtract the two known angles from 180 degrees. Remaining angle = 180 – 35.77 – 43                                                           = 101.2273801 =101.23-As we know the angle and the lengths of the two sides between them we can work out the area of the triangle using the following formula, A= 0.5ABsinCTherefore, A = 0.5 x 12 x 14 x sin (101.2273801)                         = 82.39 m2

EC
Answered by Eoin C. Maths tutor

3545 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 5x + y = 21 and x - 3y = 9


The area of this rectangle is 56 cm2 length = 3k+2 and width = 7 - Find the value of k


(b) In 2013, the price for each unit of electricity was 13.5 cents. Over the next 3 years, this price increased exponentially at a rate of 8% per year. Calculate the price for each unit of electricity after 3 years


what is: a) 1/3 +1/4 ? b) 4/6 + 3/12?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning