∫ (ln(x)/(x*(1+ln(x))^2) dx

use u = 1+ln(x) as the substitution du/dx = 1/xdx = x du ∫ (ln(x)/(x*(1+ln(x))^2) dx = ∫ ((u-1)x/ x(u^2)) du = ∫ (u-1)/(u^2) du

Answered by Jack B. Maths tutor

6929 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (3x^2 - (1/4)x^-2 + 3) dx


If the quadratic equation kx^2+kx+1=0 has no real roots, what values of k are possible?


Simplify: (3x+8)/5 > 2x + 1


Show that 2sin(x) =(4cos(x)-1)/tan(x) can be written as: 6cos^2(x)-cos(x)-2=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences