∫ (ln(x)/(x*(1+ln(x))^2) dx

use u = 1+ln(x) as the substitution du/dx = 1/xdx = x du ∫ (ln(x)/(x*(1+ln(x))^2) dx = ∫ ((u-1)x/ x(u^2)) du = ∫ (u-1)/(u^2) du

Answered by Jack B. Maths tutor

6938 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate the function cos^2(x)


Integrate 2sin^3(x)+3.


A cannonball is fired at an angle of 30 degrees and a velocity of 16 m/s. How long does it take (to 2 significant figures) for the cannonball to reach the ground?


It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences