∫ (ln(x)/(x*(1+ln(x))^2) dx

use u = 1+ln(x) as the substitution du/dx = 1/xdx = x du ∫ (ln(x)/(x*(1+ln(x))^2) dx = ∫ ((u-1)x/ x(u^2)) du = ∫ (u-1)/(u^2) du

JB
Answered by Jack B. Maths tutor

7307 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is it that sin^2(x) + cos^2(x) = 1?


Solve the simultaneous equations: (1) y – 2x – 4 = 0 , (2) 4x^2 + y^2 + 20x = 0


Polynomial long division, how do I do it?


If h(x) = 2xsin(2x), find h'(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences