∫ (ln(x)/(x*(1+ln(x))^2) dx

use u = 1+ln(x) as the substitution du/dx = 1/xdx = x du ∫ (ln(x)/(x*(1+ln(x))^2) dx = ∫ ((u-1)x/ x(u^2)) du = ∫ (u-1)/(u^2) du

JB
Answered by Jack B. Maths tutor

7618 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y= x^(-3/2) + (1/2)x^4 + 2, Find: (a) the integral of y (b) the second differential of y


The curve has equation y = x^3 - x^2 - 5x + 7 and the straight line has equation y = x + 7. One point of intersection, B, has coordinates (0, 7). Find the other two points of intersection, A and C.


Differentiate 2x^3+23x^2+3x+5 and find the values of x for which the function f(x) is at either at a maximum or minimum point. (Don't need to specify which is which)


How do I solve a simultaneous equation in two variables when they have with different coefficients?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning