∫ (ln(x)/(x*(1+ln(x))^2) dx

use u = 1+ln(x) as the substitution du/dx = 1/xdx = x du ∫ (ln(x)/(x*(1+ln(x))^2) dx = ∫ ((u-1)x/ x(u^2)) du = ∫ (u-1)/(u^2) du

JB
Answered by Jack B. Maths tutor

7918 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A new sports car accelerates using rockets at 5m/s for 30 seconds from some traffic lights and then decelerate for 45 seconds to a stop.


The quadratic equation 2x^2 + 8x + 1 = 0 has roots x1 and x2. Write down the value of x1+x2 and x1*x2 and find the value of x1^2 + x2^2


A curve has equation y = x^3 - 3x^2 -24x + 5, find the x co-ordinates of the two stationary points of the curve and hence determine whether they are maximum or minimum points.


Given y=x^2(1+4x)^0.5, show that dy/dx=2x(5x+1)/((1+4x)^0.5)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning