∫ (ln(x)/(x*(1+ln(x))^2) dx

use u = 1+ln(x) as the substitution du/dx = 1/xdx = x du ∫ (ln(x)/(x*(1+ln(x))^2) dx = ∫ ((u-1)x/ x(u^2)) du = ∫ (u-1)/(u^2) du

Answered by Jack B. Maths tutor

7016 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y = 2x^2 - 12x + 16 Find the gradient of the curve at the point P (5, 6).


Find the first derivative of f(x). f(x) = ln(3x^2+2x+1)


How do I integrate sin^2(x)?


How do I differentiate (x^2 + 3x + 3)/(x+3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences