Find the General Second Order Differential Equation Using Substitution (A2 Further Maths)

Find the General Second Order Differential Equation 4x2d2y/dx2 - 8xdy/dx +(8+4x2)y = x4, Transform Using y = vx. 1) Differentiate both sides of y = vx (apply Product Rule to right hand side) dy/dx = xdv/dx + v ... Equation 12) Differentiate dy/dx = xdv/dx + v (apply Product Rule to xdv/dx) d2y/dx2 = xd2v/dx2 + dv/dx + dv/dx d2y/dx2 = xd2v/dx2 + 2dv/dx ... Equation 23) Substitute Equation 1, Equation 2 & y = vx into the original equation and simplify 4x2(xd2v/dx2 + 2dv/dx) - 8x(xdv/dx + v) + vx(8 + 4x2) = x4 4x3d2v/dx2 + 8x2dv/dx - 8x2dv/dx - 8vx + 8vx + 4x3v = x4 4x3d2v/dx2 + 4x3v = x4 4d2v/dx2 + 4v = x4) Find the Particular integral (right side of original equation is x) Particular Intergal: v = ax + b dv/dx = a d2vdx2 = 05) Substitute Particular Integrals into 4d2v/dx2 + 4v = x 4(0) + 4(ax + b) = x 4ax +4b = x equating coefficients, a = 1/4 & b = 0, therefore particular integral is 1/4x6) Form Auxiliary Quadratic Equation 4m2 + 4 = 0 4m2 = -4 m2 = -1 therefore m = i therefore Auxiliary Quadratic Equation is Acos(x) + Bsin(x) therefore General Equation : v = Acos(x) + Bsin(x) +1/4x 7) Revert back to original form (in terms of y) v = y/x therefore, y/x = Acos(x) + Bsin(x) +1/4x y = x[Acos(x) + Bsin(x) +1/4x]

Related Further Mathematics GCSE answers

All answers ▸

Find the coordinates of the stationary points on the curve y=x^5 -15x^3


Factorise 6x^2 + 7x + 2


Find dy/dx when y=2x^(4)+3x^(-1)


Lengths of two sides of the triangle and the angle between them are known. Find the length of the third side and the area of the triangle.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences