The equation 3x^2 – 5x + 4 = 0 has roots P and Q, find a quadratic equation with the roots (P + 1/2Q) and (Q + 1/2P)

We know the roots of the equation 3x2 - 5x + 4 = 0 is P & Q, therefore is is equivalent to (x - P)(x - Q) = 0. Expanding the expression we get x2 - x(P+Q) + PQ = 0. Equating coefficents with the original we see that P + Q = 5/3 & PQ = 4/3. The equation of a quadratic is (x- c1)(x-c2). Let c1 = P + 1/2Q & c2 = Q + 1/2P to get [x - (P + 1/2Q)][x - (Q + 1/2P)] = 0. Expanding and simplifying gives x2 - x(P + 1/2Q + Q + 1/ 2P) + (P +1/2Q)(Q + 1/2P) = 0, Simplifiying further gives x2 -x[(P+Q) +((P+Q)/(2PQ))] + (PQ +1 1/4PQ) = 0. Substituting P + Q = 5/3 & PQ = 4/3 to get x2 - x(55/24) + 121/48 = 0. Multiply everything by 48 to get integer values and a final answer 48x2 - 110x + 121 = 0. (did not include long calculation in paragraph as it is not very clear when typed)

SC
Answered by Shafath C. Further Mathematics tutor

3297 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A curve has equation: y = x^3 - 3x^2 + 5. Show that the curve has a minimum point when x = 2.


Find the coordinates of any stationary points of the curve y(x)=x^3-3x^2+3x+2


How would I solve the following equation d^2x/dt^2 + 5dx/dt + 6x = 0


A circle has equation x^{2}-8x+y^{2}-6y=d. A line is tangent to this circle and passes through points A and B, (0,17) and (17,0) respectively. Find the radius of the circle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning