The equation 3x^2 – 5x + 4 = 0 has roots P and Q, find a quadratic equation with the roots (P + 1/2Q) and (Q + 1/2P)

We know the roots of the equation 3x2 - 5x + 4 = 0 is P & Q, therefore is is equivalent to (x - P)(x - Q) = 0. Expanding the expression we get x2 - x(P+Q) + PQ = 0. Equating coefficents with the original we see that P + Q = 5/3 & PQ = 4/3. The equation of a quadratic is (x- c1)(x-c2). Let c1 = P + 1/2Q & c2 = Q + 1/2P to get [x - (P + 1/2Q)][x - (Q + 1/2P)] = 0. Expanding and simplifying gives x2 - x(P + 1/2Q + Q + 1/ 2P) + (P +1/2Q)(Q + 1/2P) = 0, Simplifiying further gives x2 -x[(P+Q) +((P+Q)/(2PQ))] + (PQ +1 1/4PQ) = 0. Substituting P + Q = 5/3 & PQ = 4/3 to get x2 - x(55/24) + 121/48 = 0. Multiply everything by 48 to get integer values and a final answer 48x2 - 110x + 121 = 0. (did not include long calculation in paragraph as it is not very clear when typed)

Related Further Mathematics GCSE answers

All answers ▸

Solve the simultaneous equations xy=2 and y=3x+5.


Find the definite integral of f(x) = 12/(x^2+10x+21) with limits [-1,1]. Give your answer to 2 decimal places.


Given y=x^3-x^2+6x-1, use diffferentiation to find the gradient of the normal at (1,5).


Why does tanx = sinx/cosx ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences