The curve C has the equation y=3x/(9+x^2 ) (a) Find the turning points of the curve C (b) Using the fact that (d^2 y)/(dx^2 )=(6x(x^2-27))/(x^2+9)^3 or otherwise, classify the nature of each turning point of C

(a)To find the turning points of a curve, need to solve dy/dx=0. Using the quotient rule one can differentiate y:y=f(x)/g(x) dy/dx=(f'(x)g(x)-f(x)g'(x))/(g(x))2f(x)=3x, f'(x)=3, g(x)=(9+x2 ), g'(x)=2x→ dy/dx=(3(9+x2 )-(3x)(2x))/(9+x2)2 =(3(9-x2))/(9+x2 )2When dy/dx=0→ 9-x2=0→x2=9→x=±3x1=3 y1=(3)(3)/(9+32 )=9/18=1/2 x2=-3 y2=(3)(-3)/(9+(-3)2 )=-9/18=-1/2 Two turning points are P1=(3,1/2) and P2=(-3,-1/2)(b) (d2 y)/(dx2 ) (x1 )=(6)(3)(32-27)/(32+9)3=(18)(9-27)/(9+9)3=-182/183=-1/18<0→P1 is a maximum turning point (d2 y)/(dx2 ) (x2 )=(6)(-3)(-32-27)/(-32+9)3=(-18)(9-27)/(9+9)3=182/183=1/18>0→P2 is a minimum turning point 

LC
Answered by Liora C. Maths tutor

4396 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A football is kicked at 30 m/s at an angle of 20° to the horizontal. It travels towards the goal which is 25 m away. The crossbar of the goal is 2.44 m tall. (A) Does the ball go into the goal, hit the crossbar exactly, or go over the top?


Write down the vector equation of the line l through the point (1,-1,2) and parallel to the vector 2i + 4k


Use integration by parts to integrate the following function: x.sin(7x) dx


Is the trapezium rule an exact method of integration?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences