How do I maximise/minimise a given function f(x)?

To find an extreme point of a function you must first take the derivative of f(x) with respect to x.
As the function will peak/trough at the extreme point, the gradient at this point will be equal to 0 and therefore f'(x) = 0 must be solved in order to find the value of x that maximise/minimise this function.
To check if the function is a minimum or a maximum you must take second order derivatives; f''(x).if f''(x) is negative, the found x value maximises the functionif f''(x) is positive, the found x value minimises the function


Related Maths A Level answers

All answers ▸

The circle (x-3)^2 +(x-2)^2 = 20 has centre C. Write down the radius of the circle and the coordinates of C.


The equation of curve C is 3x^2 + xy + y^2 - 4x - 6y + 7 = 0. Use implicit differentiation to find dy/dx in terms of x and y.


I can differentiate exponentials (e^x), but how can I differentiate ln(x)?


(FP3 question). Integrate 1/sqrt(3-4x-x^2).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences