Solve: 3x+5y=19 4x-2y=-18

These are simultaneous equations and we need to find the value of X and Y. We can use the elimination method. The coefficients (the amount the letter is being multiplied by) of X and Y do not match. First, we need to create common coefficients to help us solve the problem. I have chosen to create the value of Ys the same. We can multiply the first equation (3x+5y=19) by 2 and the second equation (4x-2y=-18) by 5. We now have 6x+10y=38 and 20x-10y=-90. Now we can add these two new equations together to eliminate Y. This gives us 26x=-52. We can now find X by dividing both sides by 26. x=-2Now we can sub X into the first equation to find Y. Doing this gives us 3(-2)+5y=19. We now can expand the brackets to give -6+5y=19. Add 6 to both sides to get Y on its own. We now have 5y=25. Divide by 5 to get one lot of Y and we get y=5. We now know x=-2 and y=5. Finally check your answer by putting the values of X and Y in the second equation. 4(-2)-2(5)=-8-10=-18. This is correct.

Answered by Charlotte L. Maths tutor

4142 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand 5a(a+3b)


Integrate x^2 + 1/ x^3 +3x +2 using limits of 1 and 0


Expand the expression (3x+2)(3-2x)


A man stands 9 metres from the base of a tree. He knows the distance from where he is standing and the top of the tree is 15 metres. How tall is the tree?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences