f(x) = x^x, find f'(3).

Therefore, y = xxcan then natural log both sides leaving ln(y) = xln(x) then differentiating both sides wrst to x d/dx(ln(y)=xln(x))we are then left with this expression (dy/dx)(1/y)=ln(x)+1 multiplying up by y leaves us with the expression dy/dx=y(ln(x)+1) can then substitue old expression back into new one and get this dy/dx=(xx)(ln(x)+1) finally subbing in x=3 gives us f'(3)=27(ln(3)+1)

Answered by Frederick R. Maths tutor

2275 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use implicit differentiation to find dy/dx of a curve with equation x^3 + yx^2 = y^2 + 1.


Solve for x (where 0<x<360) 2sin^2(x) - sin(x) - 1 = 0


Differentiate 3x^(2)+xy+y^(2)=12 with respect to x


Find where the curve 2x^2 + xy + y^2 = 14 has stationary points


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences