integral of (tan(x))dx using the substitution u = cos(x)

given u = cos(x), therefore du/dx=-sin(x), as tan(x)=sin(x)/cos(x), can rewrite tan(x)=(-du/dx)/u, therefore integral can become [(-1/u)du], after inegrating you are left with -ln(u)+c, therefore ln(1/u)+c, subbing back in leaves us with ln((1/cos(x)))+c

FR
Answered by Frederick R. Maths tutor

4321 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate x*sin(x) with respect to x.


A curve has equation y = 7 - 2x^5. a) Find dy/dx. b) Find an equation for the tangent to the curve at the point where x=1.


What is Differentiation?


Differentiate y(x)=x^2 + 2x + 1, find the turning point and classify it as minimum or maximum.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning