integral of (tan(x))dx using the substitution u = cos(x)

given u = cos(x), therefore du/dx=-sin(x), as tan(x)=sin(x)/cos(x), can rewrite tan(x)=(-du/dx)/u, therefore integral can become [(-1/u)du], after inegrating you are left with -ln(u)+c, therefore ln(1/u)+c, subbing back in leaves us with ln((1/cos(x)))+c

FR
Answered by Frederick R. Maths tutor

4698 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that the indefinite integral of I = int(exp(x).cos(x))dx is (1/2)exp(x).sin(x) + (1/2)exp(x).cos(x) + C


Prove the identity: (cos θ + sin θ)/(cosθ-sinθ) ≡ sec 2θ + tan 2θ


Solve the


How do you differentiate (2x+xe^6x)/(9x-(2x^2)-ln(x)) w.r.t. x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning