integral of (tan(x))dx using the substitution u = cos(x)

given u = cos(x), therefore du/dx=-sin(x), as tan(x)=sin(x)/cos(x), can rewrite tan(x)=(-du/dx)/u, therefore integral can become [(-1/u)du], after inegrating you are left with -ln(u)+c, therefore ln(1/u)+c, subbing back in leaves us with ln((1/cos(x)))+c

FR
Answered by Frederick R. Maths tutor

4659 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you differentiate f(x) = 2x(3x - 1)^2 using the chain rule?


Find the equation of the straight line passing through the origin that is tangent to the curve y = ln(x).


Why does differentiation give us the results that it does?


Find the x co-ordinates of the stationary points of the graph with equation y = cos(x)7e^(x). Give your answer in the form x = a +/- bn where a/b are numbers to be found, and n is the set of integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning