How high can you raise a kilogram of sugar with 1 kWh of electrical energy? (To 2 s.f in kilometres)

The first thing to recognise is that the terms 'sugar' and 'electrical' are there to confuse you - the substance raised and the type of form of energy used to raise it are not important to the question.
This is ultimately a question of equating energies, Ep as potential energy of the sugar and Ee the electrical energy used to raise it. We know that the gravitational energy of the sugar after raising it will be equal to 1 kWh, so we look to express this in a unit that is more useful, Joules.
1 kWh is the energy output of 1000 Watts of power for 1 hour (6060 seconds). As 1 Watt is 1 Joule / second, we find that:Ee = (1000)(60)(60) = 3,600,000 J
The potential energy of the sugar after raising it to a height h is: E = m
g*h
We have m = 1kg and g = 9.8 m/s/s .
Therefore with Ep = Ee we have:
3,600,000 = (9.81)*hh = 367.3469... km
To 2 s.f this is rounded to: h = 370 km

Answered by Alexander L. Physics tutor

2419 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

In 5V circuit has two 2 Ohm resistors in parallel, what is the current passing through each resistor?


A student investigated how the resistance of a piece of nichrome wire varies box with length.Describe how the student would obtain the data needed for the investigation. Your answer should include a risk assessment for one hazard in the investigation.


Matt weighs 60kg and his son, Rob weighs 30kg. They both run a 100m race and finish the race running at 5m/s. Who has more Kinetic Energy at the end of the race?


How do diodes work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences