How high can you raise a kilogram of sugar with 1 kWh of electrical energy? (To 2 s.f in kilometres)

The first thing to recognise is that the terms 'sugar' and 'electrical' are there to confuse you - the substance raised and the type of form of energy used to raise it are not important to the question.
This is ultimately a question of equating energies, Ep as potential energy of the sugar and Ee the electrical energy used to raise it. We know that the gravitational energy of the sugar after raising it will be equal to 1 kWh, so we look to express this in a unit that is more useful, Joules.
1 kWh is the energy output of 1000 Watts of power for 1 hour (6060 seconds). As 1 Watt is 1 Joule / second, we find that:Ee = (1000)(60)(60) = 3,600,000 J
The potential energy of the sugar after raising it to a height h is: E = m
g*h
We have m = 1kg and g = 9.8 m/s/s .
Therefore with Ep = Ee we have:
3,600,000 = (9.81)*hh = 367.3469... km
To 2 s.f this is rounded to: h = 370 km

AL
Answered by Alexander L. Physics tutor

3219 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

calaculate the resistance if two 3 ohm resitsors are placed in series and another 3 ohm was attached in parallel


If Hannah slows down from a speed of 12 m/s to 8 m/s and has a mass of 45kg, how much force has been exerted on her to cause this deceleration?


Describe the energy changes as electricity is produced in a fossil fuel station.


A 15kg cannonball and a 1kg football are dropped to the ground from a height of 10 metres. Calculate the speed of the cannonball and of the football just before they hit the ground (you may ignore air resistance).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning