0.04 moles of sulfur trioxide is placed in a flask (1.50dm^3) and allowed to reach equilibrium at 600 degrees. If 30% of the sulfur trioxide decomposes to sulfur dioxide and oxygen - what is the equilibrium constant?

The easiest way to start your answer is by writing out the equation for the reaction {2SO3 (g) <-> 2SO2 (g) + O2 (g) } and considering what the equilibrium constant is {Kc = [products] / [reactants] } - where the concentrations shown are the equilibrium constants and stoichiometries of the reactants and products need to be taken into account. Then construct a table with row titles; "initial moles", "change in moles", "moles at equilibrium" and "concentration at equilibrium" and column headings of the different reactant and product species. SO3: Initial moles = 0.04, Change in moles = -0.3 x 0.04 = -0.012 (because only 30% of the SO3 decomposes), Moles at eqm. = 0.04 - 0.012 = 0.028, Conc. at eqm. (mol dm-3) = 0.028 mol / 1.5 dm3 = 0.0187 mol dm-3 SO2: Initial moles = 0, Change in moles = + 0.012, Moles at eqm. = 0.012, Conc. at eqm. (mol dm-3) = 0.012 / 1.5 = 0.008 mol dm-3 O2: Initial moles = 0, Change in moles = 1/2 x + 0.012 = +0.006 (remember stoichiometries in the equation), Moles at eqm. = 0.006, Conc. at eqm. (mol dm-3) = 0.006 / 1.5 = 0.004 mol dm-3 Therefore Kc = [SO2]2 [O2] / [SO3]2 = (0.008 mol dm-3)2(0.004 mol dm-3) / (0.0187 mol dm-3)2 = 7.32 x 10-4 mol dm-3 (always check your answer and check that the units are right as well)

Answered by Isobel W. Chemistry tutor

2659 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

A solution of ethanoic acid in water has a concentration of 3 g/dm^3. Given that the pKa of ethanoic acid is 4.76, calculate the pH of this solution.


Why are some complex ions coloured?


A) What assumptions are made about ideal gases. B) if 14g of an ideal gas is added to a 4 dm3 container at 210Kpa pressure and a temperature of 40oc how many moles were added and suggest the identity of the gas.


A reaction, A + B -> C, is considered second order with respect to A and first order with respect to B. What is the effect of simultaneously doubling the concentration of A and B on the rate of reaction?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences