The curve C has equation y = x^3 - 2x^2 - x + 9, x > 0. The point P has coordinates (2, 7). Show that P lies on C.

Every point on the curve C satisfies the equation. In order to show P lies on C, we need to test if either x- or y-coordinates satisfy the equation. It is easier to subsitute x=2 into the equation.

By doing so, this gives

y = (2)3 - 2 x (2)2 - (2) + 9 

y = 7

As P's y-coordinate is also 7, therefore, P (2, 7) lies on the curve C.

MP
Answered by Minh P. Maths tutor

15338 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the co ordinates and nature of the turning points of the curve C withe equation, y=2x^3-5x^2-4x+2


Expand and simplify (n + 2)^3 − n^3.


I don't understand chain rule for differentiation especially when combined with more complex functions.


Differentiate the following: y=(7x^2+2)sinx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning