Why can extreme pH or temperature cause enzymes to denature?

Enzymes are proteins; as such they have a primary, secondary and tertiary structure. Each type of structure helps to hold the enzyme together so that it's substrate - the molecule it specifically binds to - can fit into the enzyme. The structures are each held in places by different types of bonding - hydrogen, ionic, hydrophilic/hydrophobic interactions and disulphide links. As an enzyme is heated beyond its optimum temperature, the hydrogen bonds holding the protein together vibrate and, with increasing temperature, will break.When an enzyme is in a non-optimum pH, the differing proportion of hydrogen ions (which cause changing pH)) will affect those bonds which contain a charge. These are the ionic and hydrogen bonds. Extreme pHs can therefore cause these bonds to break. When the bonds holding the complementary active site of an enzyme break, it cannot bind to its substrate. The enzyme is thus denatured, as no enzyme-substrate or enzyme-product complexes can form.

LF
Answered by Lorissa F. Biology tutor

55657 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

Explain the transmission of a nerve impulse across a cholinergic synapse referring to action potentials. (6)


How does increasing temperature affect the rate of a reaction in the presence of an enzyme.


Which mechanisms control the homeostasis of blood sugar levels in the human body? How do these regulate the concentration of sugar in the blood?


How is a specific protein formed from DNA?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences