How do you integrate by parts?

This is one of the trickiest methods of calculus on the course, but it's important to know, and is very doable if you set up the problem right and remember the steps. 

Integration by parts works when you have to integrate a function of the type f=u(dv/dx). All you have to remember is that, and the formula(dv/dx) dx = uv - ∫ (du/dx) dx

Ok, let's try an example. 

Say you're asked to integrate xsin(x). 

I find it makes it easiest to write out all the things I need for the formula before I plug them in. 

We'll choose x to be u, because differentiating x makes it more simple, while differentiating sin(x) doesn't really help that much. You always choose u to be the part that comes out simplest when differentiated.

So:                                                            u = x

Then, by differentiating,                du/d= 1

and also:                                               dv/dx = sin(x)

Then, integrating to find v,             v = -cos(x). 

Now, all we have to do is plug that back into the formula from earlier:

             ∫ xsin(x) dx = -xcos(x) - ∫ -cos(x) (1) dx.

Which is way easier! Integrating cos(x) gives sin(x) + c (always remember c!), so we end up with

             ∫ xsin(x) dx = -xcos(x) + sin(x) + c.

And that's your answer!

IE
Answered by Isaac E. Maths tutor

5188 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = e^x + 10sin(4x), find the value of the second derivative of this equation at the point x = pi/4.


Express 8/((root3) -1)) in the form a(root3) +b, where a and b are integers.


The element of a cone has length L. For what height H (with respect to L) will the volume of the cone be the largest?


Show that x^2 - x +2 is positive for all values of x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences