An elastic wire suspended from a workbench has a 2kg mass attached to its free end. The wire changes in length by 2cm. Calculate the elastic potential energy stored in the wire.

Using Hooke's law (F = k * e) we can find the spring constant. Rearranging for k, we find that k = (9.81 * 2)/0.02 = 981 N/m. To calculate this we needed to find the force acting on the wire (F = mg) and also convert our extension into meters. In a session I would draw a diagram of the system showing the forces acting and the extension of the wire.We can then substitute this into the equation for elastic potential energy: E = 0.5 * k * e^2 = 0.196 J.

Answered by James G. Physics tutor

1547 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Explain the difference between a battery and a cell


A coil is connected to a voltmeter. A bar magnet, initially held above the coil, is left to fall into the coil. Explain why the voltmeter shows a reading. How will the reading of the voltmeter be affected if the magnet is dropped from a greater height?


What is the difference between a scalar and a vector?


The energy transferred from the water in the kettle to its surroundings in 2 hours is 46 200 J. The mass of water in the kettle is 0.50 kg. The specific heat capacity of water is 4200 J/kg °C. What is its temperature after 2 hours?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences