A Positron has the same mass, but opposite charge to an electron. A Positron and electron are orbiting around each other separated by 1μm, in a stable circular orbit about their centre of mass, as a result of electrostatic attraction. Calculate the period

State Coulomb's law:F=(1/4πE0 )(qQ/d2)Since the distance separating the charges is twice the radius of the orbit relabel d to 2r and the charges are equal and opposite:F= -(1/16πƐ0 )(q/r)2Notice that this is simple circular motion so we can use the force to relate these two concepts in an equation (here we can ignore the negative since it is present in the previous equation by convention to show that the force is attractive, in circular motion an inwards force is considered positive):mw2r = (1/16πƐ0 )(q/r)2w = sqrt(1/mr3πƐ0 )(q/4)Knowing that T = 2π/w, obtain:T= sqrt(mr3 πƐ0)*(8π/q)Put all the numbers in on a calculator to get the final answer:2.8 x 10-10s (2 s.f.)

Answered by John-Joseph B. Physics tutor

1570 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How does a thermal nuclear reactor work?


What causes or reduces resistance in a material?


Topic - force as rate of change of momentum; (i) force on a wall due to water from a hose, (ii) force on a table as a rope is dropped onto it.


Electrons are accelerated through a potential difference of 300 V. What is their final de Broglie wavelength?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences