A Positron has the same mass, but opposite charge to an electron. A Positron and electron are orbiting around each other separated by 1μm, in a stable circular orbit about their centre of mass, as a result of electrostatic attraction. Calculate the period

State Coulomb's law:F=(1/4πE0 )(qQ/d2)Since the distance separating the charges is twice the radius of the orbit relabel d to 2r and the charges are equal and opposite:F= -(1/16πƐ0 )(q/r)2Notice that this is simple circular motion so we can use the force to relate these two concepts in an equation (here we can ignore the negative since it is present in the previous equation by convention to show that the force is attractive, in circular motion an inwards force is considered positive):mw2r = (1/16πƐ0 )(q/r)2w = sqrt(1/mr3πƐ0 )(q/4)Knowing that T = 2π/w, obtain:T= sqrt(mr3 πƐ0)*(8π/q)Put all the numbers in on a calculator to get the final answer:2.8 x 10-10s (2 s.f.)

Answered by John-Joseph B. Physics tutor

1829 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

what depends if the universe is expanding or not


An electron of mass 9.11x10^(-31) is fired from an electron gun at 7x10^6 m/s. What size object will the electron need to interact with in order to diffract?


How would I resolve forces on a slope?


What path would a charge moving in the x-y plane track, in the presence of a uniform magnetic field out of the page?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences