Using your knowledge of periodicity and atomic structure, why does the first ionisation energy decrease moving down a group yet increase moving along a period in the periodic table?

Moving down a group means that the shielding of the outer electrons is increased due to the greater number of inner electron shells within the atom - these are between the nucleus and the outer electrons. As a result, the force of attraction between the positively charged protons and the negatively charged outer electrons is reduced - it requires less energy to remove the outer electrons, hence the first ionisation energy decreases down a group. Moving along a group, the trend in first ionisation energy is to increase due to a greater positive nuclear charge within the nucleus. The nuclear charge increases along a group due to more protons being in the nucleus of each atom. As a result, the outer electrons are more strongly attracted to the nucleus of the atom - more energy is required to remove the first electron. Another factor causing this trend is shielding. Along a period, nuclear charge increases due to more protons so the outer electrons are held tighter/closer to the nucleus and as such require more energy to be removed.

AI
Answered by Alfie I. Chemistry tutor

1934 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

i) Write a full balanced equation for (a) the complete combustion of glucose and (b) the incomplete combustion of glucose. ii) Following from part i) suggest a reason (and explain) the difference with the product in reaction (a) and that of reaction (b).


Thinking about the periodicity of the period 3 elements, explain the structure of the Sodium and Phosphorus Oxides and the acid-base behaviour of the Oxide solutions.


1. X with 2,4-DNPH forms a red precipitate. 2. X reduces blue Copper ions into red precipitate. What kind of compound is X?


what is entropy in terms of disorder?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning