The curve C has equation ye^(-2x) = 2x + y^2. Find dy/dx in terms of x and y.

The curve's equation is presented as an implicit function. Therefore we must use implicit differentiation to solve this problem. To do this, we differentiate both sides of the equation with respect to x, applying the chain rule where a y variable appears, and then rearrange to give dy/dx. The equation given in the question differentiates implicitly to e-2x(dy/dx) - 2ye-2x = 2 + 2y(dy/dx). This can be rearranged to dy/dx = (2 + 2ye-2x )/ (e-2x- 2y)

GW
Answered by Georgia W. Maths tutor

9293 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I improve my mathematics


In the case of vectors, how do I find the shortest distance between a point and a line?


By using the substitution, x = 2sin(y) find the exact value of integral sqrt(1/3(4-x^2)) dx with limits 0 and 1.


Find the inverse of f(x) = (3x - 6)/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning