Find the displacement function if the acceleration function is a=2t+5. Assume a zero initial condition of displacement and v=8 when t=1.

Integrating the acceleration function gives the velocity function v, as below:
v = t2 +5t +C1, where C1 is a constant.

Integrating the velocity function gives the displacement function x, as below:
x = t3/3 + 5t2/2 + C1t + C2, where C2 is another constant.

The answer is completed by finding the 2 constants, C1 and C2.

With a zero initial condition of displacement, that means t=0, x=0. Put this initial condition into the displacement function ---> C2 = 0.

The boundary condition is that: v=8 when t=1. Simply put this condition into the velocity function ---> C1 = 2.

Thus, the complete displacement function is as below:
x =  t3/3 + 5t2/2 + 2t

JH
Answered by Justin H. Further Mathematics tutor

3630 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A line has Cartesian equations x−p = (y+2)/q = 3−z and a plane has equation r ∙ [1,−1,−2] = −3. In the case where the angle θ between the line and the plane satisfies sin⁡θ=1/√6 and the line intersects the plane at z = 0. Find p and q.


What is the general solution to the equation d2y/dx2 + dy/dx - 2y = -3sinx + cosx (d2y/dx2 signals a second order derivative)


A block of mass 50kg resting on a rough surface with a coefficient of friction equal to 1/3. Find the maximum angle at which the surface can be inclined to the horizontal without the block slipping. Give your answer to 3 significant figures


Show, using de Moivre's theorem, that sin 5x = 16 sin^(5) x - 20 sin^(3) x + 5 sin x 


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences