A cannonball is fired at an angle of 30 degrees and a velocity of 16 m/s. How long does it take (to 2 significant figures) for the cannonball to reach the ground?

First, we make the standard assumption that there is no air resistance, meaning that gravity is the only force acting on our cannonball. We then use the SUVAT equations, so: S = 0m (because it will return to the ground), U = -16sin30 (because we look at the vertical velocity) m/s, V is unknown, A = g = 9.8 m/s^2 and T=t. Then, we can use the kinematics equation s = ut + 0.5t^2.Substituting our values, 0 = -16sin30(t) + 0.5x9.8t^2. Then, using the quadratic formula, we get two solutions for t: t = 1.63s and t = 0s. We eliminate the 0 solution because that is the launch position. Thus it takes 1.63s to 2s.f.

NB
Answered by Nada B. Maths tutor

4364 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate by substitution?


Given that y= x^(-3/2) + (1/2)x^4 + 2, Find: (a) the integral of y (b) the second differential of y


How to find the reciprocal of a graph, such as y=cos(x)?


Given that f(x) = x^2 (3x - 1)^(1/2) find f'(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning