A cannonball is fired at an angle of 30 degrees and a velocity of 16 m/s. How long does it take (to 2 significant figures) for the cannonball to reach the ground?

First, we make the standard assumption that there is no air resistance, meaning that gravity is the only force acting on our cannonball. We then use the SUVAT equations, so: S = 0m (because it will return to the ground), U = -16sin30 (because we look at the vertical velocity) m/s, V is unknown, A = g = 9.8 m/s^2 and T=t. Then, we can use the kinematics equation s = ut + 0.5t^2.Substituting our values, 0 = -16sin30(t) + 0.5x9.8t^2. Then, using the quadratic formula, we get two solutions for t: t = 1.63s and t = 0s. We eliminate the 0 solution because that is the launch position. Thus it takes 1.63s to 2s.f.

Answered by Nada B. Maths tutor

4025 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let R denote the region bounded by the curve y=x^3 and the lines x=0 and x=4. Find the volume generated when R is rotated 360 degrees about the x axis.


find the value of dy/dx at the point (1,1) of the equation e^(2x)ln(y)=x+y-2


Use Simpson's rule with 5 ordinates (4 strips) to find an approximation to "integral between 1 and 3 of" 1/sqrt(1+x^3) dx giving your answer to three significant figures.


How do you do algebraic long division?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences