Find the equation of the tangent to the curve y = 3x^2 + 4 at x = 2 in the form y = mx + c

There are two main steps. First find the gradient of the curve at x = 2 (m). This is done by differentiating the curve equation y = 3x^2 + 4 to get dy/dx = 6x. By plugging in x = 2, we get the gradient of the tangent, m, as 62 = 12. Then we need to find the y intercept of the tangent, c. We make c the subject, so c = y - mx. We worked out what m is (12) so we just need a set of coordinates x,y which lie on the tangent. The easiest point is where the tangent meets the curve. We know x = 2 so plugging that into the curve equation gives y = 3(2^2) + 4 = 16. Now we have values of x,y,m we can find c. c = 16 - 12*2 = -8. Therefore the final answer is y = 12x - 8

Answered by Maths tutor

5513 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has an equation y=3x-2x^2-x^3. Find the x-coordinate(s) of the stationary point(s) of the curve.


Given that 5cos^2(x) - cos(x) = sin^2(x), find the possible values of cos(x) using a suitable quadratic equation.


The equation (k+3)x^2 + 6x + k =5 has two distinct real solutions for x. Prove that k^2-2k-24<0


What is the difference between quotient rule, product rule and chain rule, and when to use them in differentiation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning