y = x^x, find y'

y = xx, by taking logs:ln(y) = ln(xx )By log laws:ln(y) = xln(x)From implicit differentiation; d/dx = y'*d/dy, so:d/dx[ln(y)] = y'*d/dy[ln(y)] = y' * 1/yFrom the product rule; d/dx[xln(x)] = ln(x) * d/dx(x) + x * d/dx[ln(x)], so:d/dx[xln(x)] = ln(x) + 1Since d/dx[ln(y)] = d/dx[xln(x)] then:y' * 1/y = ln(x) + 1, y' = y[ln(x) + 1]y = xxFinally: y' = xx [ln(x) + 1]

Answered by Scott D. Maths tutor

2907 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact solution of the following equation: e^(4x-3) = 11


At t seconds, the temp. of the water is θ°C. The rate of increase of the temp. of the water at any time t is modelled by the D.E. dθ/dt=λ(120-θ), θ<=100 where λ is a pos. const. Given θ=20 at t=0, solve this D.E. to show that θ=120-100e^(-λt)


Given that y = 16x + 1/x , find the two values of x for which dy/dx = 0


A circle with centre C has equation x^2 + y^2 +8x -12y = 12


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences