y = x^x, find y'

y = xx, by taking logs:ln(y) = ln(xx )By log laws:ln(y) = xln(x)From implicit differentiation; d/dx = y'*d/dy, so:d/dx[ln(y)] = y'*d/dy[ln(y)] = y' * 1/yFrom the product rule; d/dx[xln(x)] = ln(x) * d/dx(x) + x * d/dx[ln(x)], so:d/dx[xln(x)] = ln(x) + 1Since d/dx[ln(y)] = d/dx[xln(x)] then:y' * 1/y = ln(x) + 1, y' = y[ln(x) + 1]y = xxFinally: y' = xx [ln(x) + 1]

SD
Answered by Scott D. Maths tutor

3607 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let p(x) = 30 x^3 -7 x^2 - 7 x + 2. Prove that (2x + 1) is a factor of p(x) and factorise p(x) completely.


The normal to the curve C when x=1 intersects the curve at point P. If C is given by f(x)=2x^2+5x-3, find the coordinates of P


express the following fraction in the form of m + (n)^1/2. the fraction is ((3*(5)^1/2)^2 - 7)/(3 + 7*(5)^1/2). where m,n are real numbers.


Let f(x) = 5x^4 + 6x^3 + 3, find dy/dx at x = 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning