y = x^x, find y'

y = xx, by taking logs:ln(y) = ln(xx )By log laws:ln(y) = xln(x)From implicit differentiation; d/dx = y'*d/dy, so:d/dx[ln(y)] = y'*d/dy[ln(y)] = y' * 1/yFrom the product rule; d/dx[xln(x)] = ln(x) * d/dx(x) + x * d/dx[ln(x)], so:d/dx[xln(x)] = ln(x) + 1Since d/dx[ln(y)] = d/dx[xln(x)] then:y' * 1/y = ln(x) + 1, y' = y[ln(x) + 1]y = xxFinally: y' = xx [ln(x) + 1]

Answered by Scott D. Maths tutor

2794 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate ln(x)?


Binomially expand the equation (2+kx)^-3


Given that 2cos(x+50)°=sin(x+40)° show tan x° = tan 40°/3


solve the simultaneous equation; x^2+y^2=10 2x+y=5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences