Factorise this quadratic = 8x^2 + 2x -3

As the coefficient of x^2 is not 1, we think of this equation as ax^2 +bx + c. When the coefficient of x^2 is not 1, then we need to firstly multiply the first and last numbers together (8 and -3) which gives us -24. Then we look at b which is 2. Then we need to think of two numbers that multiply to make -24 and add together to make 2. This would be 6 and -4. You then break up b into these two coefficients giving 8x^2 -4x +6x -3. Then split this into two brackets. (8x^2 -4x) PLUS ( +6x -3). Then factorise further within these two . The first part would go to 4x(2x-1) and the second part would go to 3(2x-1). The parts in brackets should be the same. Therefore, take this out as a factor; (2x-1) (4x+3). Always expand out at the end to double check!

Answered by Sadia Z. Maths tutor

3024 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

5, 11, 21, 35, 53, ... Find the nth term of this sequence.


How to find an original price from a reduced percentage.


Find the two points of intersection of the graphs y=x2 and y=x+2.


Draw the graph of, y = x^2 – 2x – 4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences