Factorise this quadratic = 8x^2 + 2x -3

As the coefficient of x^2 is not 1, we think of this equation as ax^2 +bx + c. When the coefficient of x^2 is not 1, then we need to firstly multiply the first and last numbers together (8 and -3) which gives us -24. Then we look at b which is 2. Then we need to think of two numbers that multiply to make -24 and add together to make 2. This would be 6 and -4. You then break up b into these two coefficients giving 8x^2 -4x +6x -3. Then split this into two brackets. (8x^2 -4x) PLUS ( +6x -3). Then factorise further within these two . The first part would go to 4x(2x-1) and the second part would go to 3(2x-1). The parts in brackets should be the same. Therefore, take this out as a factor; (2x-1) (4x+3). Always expand out at the end to double check!

SZ
Answered by Sadia Z. Maths tutor

3473 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

solve x^2 + 5x +6 = 0


A solution to the equation 2x^2-3x-17=0 lies between 2&3 use method of trail and improvement to find the solution


Clare buys some shares for $50x. Later, she sells the shares for $(600 + 5x). She makes a profit of x% (a) Show that x^2 + 90x − 1200 = 0


Find the roots of the following function: f(x)= 3*(x-1)^2 - 6.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences