Find the integral of 1/(x-5) with respect to x

This question tests fundamental understanding of integration and checks that the student is not simply memorizing the simple examples for the test. Most students will remember that the integral of 1/x is ln(|x|), however real understanding of the theory is needed to see that the x-5 that replaces the x in the above example makes no difference to the overall rule as all that has been changed is the addition of a constant. The official method to answer this question would be to show the student that this is the reverse of the chain rule of differentiation and that when you differentiate ln(x-5) you would get 1/(x-5) by the chain rule. And as at A-Level, differentiation is taught to be the opposite of integration. Then we can see by comparison that the answer must be ln(|x-5|). However, I like this question as it shows me the level of intuition a student has towards this area of integration. This question can then be expanded into finding the integral of 1/(5x-3) and if the intuition from the previous example holds, the student will see that the 3 can be ignored however the 5 can not and so the answer is 1/5*ln(|5x-3|).

Answered by Harry L. Maths tutor

4283 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 2y^(1/2) -7y^(1/4) +3 = 0


Find the integral of ln x


A curve has equation y = 20x −x^2 −2x^3 . The curve has a stationary point at the point M where x = −2. Find the x-coordinate of the other stationary point of the curve.


The complex conjugate of 2-3i is also a root of z^3+pz^2+qz-13p=0. Find a quadratic factor of z^3+pz^2+qz-13p=0 with real coefficients and thus find the real root of the equation.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences